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ABSTRACT

Motivation: Multifunctional proteins perform several functions. They
are expected to interact specifically with distinct sets of partners,
simultaneously or not, depending on the function performed.
Current graph clustering methods usually allow a protein to belong
to only one cluster, therefore impeding a realistic assignment of
multifunctional proteins to clusters.
Results: Here, we present Overlapping Cluster Generator (OCG),
a novel clustering method which decomposes a network into
overlapping clusters and which is, therefore, capable of correct
assignment of multifunctional proteins. The principle of OCG is to
cover the graph with initial overlapping classes that are iteratively
fused into a hierarchy according to an extension of Newman’s
modularity function. By applying OCG to a human protein–protein
interaction network, we show that multifunctional proteins are
revealed at the intersection of clusters and demonstrate that the
method outperforms other existing methods on simulated graphs
and PPI networks.
Availability: This software can be downloaded from http://tagc.univ-
mrs.fr/welcome/spip.php?rubrique197
Contact: brun@tagc.univ-mrs.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Protein-protein interaction (PPI) networks highlight the modularity
of cellular processes and allow deciphering protein functions at the
cellular level. Since PPI networks can be represented as simple
graphs where a vertex corresponds to a protein and an edge to a direct
physical interaction, graph partitioning methods have been proposed
to highlight groups of densely connected vertices (Brun et al.,
2003, 2004; Newman, 2004, 2006; or Aittokallio and Schwikowski,
2006 for a review). Identified clusters are usually designated
as ‘functional modules’, i.e. groups of proteins involved in the
same pathway or the same cellular process. Although successful
in predicting the function of uncharacterized proteins (Sharan et al.,
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2007), these methods lead to ‘strict’ partitions, in which each vertex
(protein) belongs to exactly one cluster (functional module). Clearly,
the logic of strict partitions does not always represent the biological
reality. For instance, some proteins perform different cellular
functions and consequently contribute to pleiotropic phenotypes
when mutated (Hodgkin, 1998). Such multifunctional proteins are
expected to specifically interact with distinct sets of partners, either
simultaneously or not, depending on the function performed. ‘Strict’
partitions, however, do not allow a protein to belong to several
clusters. Another limitation is encountered with protein complexes
whose composition and function may vary according to the context
and conditions (Kühner et al., 2010). Addressing some biological
questions, therefore, requires methods leading to ‘overlapping’
clusters, that allow vertices to be ‘multi-clustered’.

Overlapping clustering first appeared three decades ago with
theoretical studies on distance analyses (Bandelt and Dress,
1989; Barthélemy and Brucker, 2001; Diatta and Fichet,
1998; Diday, 1986; Fichet, 1986; or, for an extensive review,
Brucker and Barthélemy, 2007). These methods have not been
intensively developed and consequently, have not been as
successful as hierarchical and partitioning methods. With respect to
biological networks, although the overlapping nature of biological
communities has been recognized (Ahn et al., 2010; Palla et al.,
2005), only few methods leading to overlapping clusters have been
proposed (Adamcsek et al., 2006; Ahn et al., 2010; Kovacs et al.,
2010). None of these methods, however, has been extensively
used to answer biological questions: CFinder contributed to the
identification of protein complexes from AP/MS data (Kühner et al.,
2010) and Link Communities helped predict a set of prostate cancer
genes (Ahn et al., 2011).

In this work, we present OCG (Overlapping Cluster Generator),
a novel method to cover a PPI network with relevant overlapping
clusters. By applying our method to the human PPI network, we
show that multifunctional proteins are revealed at the intersection
of clusters. Finally, we show that our method outperforms other
existing methods (Adamcsek et al., 2006; Ahn et al., 2010) both on
simulated graphs and on PPI networks.

2 MATERIALS AND METHODS

2.1 Datasets
A high confidence dataset of 27286 binary interactions involving 9596
proteins was built by joining (i) 2325 human interactions manually extracted
from the literature and (ii) 24 961 binary interactions from the APID
database [Prieto and De Las Rivas (2006), http://bioinfow.dep.usal.es/apid/].

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

brun@tagc.univ-mrs.fr


[18:06 5/12/2011 Bioinformatics-btr621.tex] Page: 85 84–90

Overlapping clustering

Interactions identified by at least one experimental method leading to the
detection of binary interactions were selected (Souiai et al., 2011). To
improve clustering efficiency, proteins involved in a single interaction were
recursively removed from the network. Following this pruning process,
we obtained a human PPI network with 24027 interactions between 6172
proteins (Supplementary Material 4). On average, each protein interacts with
7.8 partners. The lists of disease genes and cancer genes were taken from
Goh et al. (2007), and Futreal et al. (2004), respectively.

2.2 Protein domain prediction
The complete set of Hidden Markov Models (HMMs) for all domains in
PfamA and PfamB were downloaded from the Pfam database (Finn et al.,
2010). We then used HMMER3 to scan each of the sequences in our network
for domains.

2.3 Simulations
A set of random graphs was created using an overlapping partition (Fig. 2A)
of 200 vertices as a model. The four overlapping regions contain 10
vertices each. Therefore, 40 vertices have to be multiclustered and 160
monoclustered. Several models of random graphs have been tested to obtain
graphs corresponding to inter-cluster edge probabilities 0.15, 0.20 and 0.25.
The different models are Erdös-Rényi, Random spanning trees (several
random spanning trees are selected in each cluster to match the required
density) and Geometric random selection in a 3D Euclidean space [Geo3D
Przulj et al. (2004)] adapting the distance threshold to the desired cluster
density. The vertices composing the intersections were selected uniformly
in [0.2,0.8]3 space in order to fit the partition model of Figure 2A. Three
sets of 100 graphs with an equivalent number of edges, corresponding to
the three probability values, have been generated for each model. pi <0.15
causes graph disconnection.

2.4 Sensitivity, specificity
The sensitivity and specificity of each method were assessed by comparing
the obtained results to the expected theoretical partition, according to the
following formulas:

Sensitivity = true positives/(true positives+ false negatives)

Specificity = true negatives/(true negatives+ false positives)

2.5 Method parameters
CFinder 2.0.4 (downloaded from http://cfinder.org/) was used with different
parameters depending on graph topology. On the biological PPI network,
k =3 led to the best partition, with the best trade-off between coverage and
number of multiclustered nodes. For simulated graphs, k =4 was used for
low-density graphs (pi = 0.15,0.20,0.25), k =5 for pi = 0.30,0.35; k =6 for
pi = 0.40,0.45; k =7 for pi = 0.50. Link Communities (downloaded from
http://barabasilab.neu.edu/projects/linkcommunities/) was used with default
parameters, automatically cutting the hierarchical tree at the point where the
density function of the partition is maximized.

3 ALGORITHM: ESTABLISHING OVERLAPPING
CLUSTERS

3.1 Selecting a criterion: Modularity M(P), Integer
Modularity Q(α)

Clustering methods in communities aim at identifying vertex classes
with a large number of internal edges relative to their cardinality.
For this, the excess of internal edges relative to the number of edges
expected for a random partition into classes having the same number
of elements, is often quantified using the modularity criterion defined
by Newman for strict partitions (Newman, 2004).

Let G= (V ,E) be a simple connected graph with n vertices and
m edges (|V |=n,|E|=m) and P be a partition of V into p classes:
P={V1,V2,..Vp}. Let eij be the percentage of edges having one end
in class Vi and the other in class Vj: eij = |E∩(Vi ×Vj)|/m. The
probability for a random edge to have one end in Vi is equal to:

ai = eii +1/2
∑

j �=i

eij.

The modularity of partition P is defined as:

M(P) =
∑

i=1..p

(eii −a2
i ).

An equivalent criterion has been established to extend the
modularity function to overlapping classes. Let dx be the degree
of vertex x in G and A its incidence matrix (Axy =1 iff (x,y)∈E).
We denote B the matrix:

Bxy = 2mAxy −dxdy.

It can be noted that all the B values corresponding to non-connected
pairs of vertices are negative, while those corresponding to the edges
of G (Axy =1) are positive or null, except if dxdy >2m. We will
admit in the following that dxdy ≤2m, as this is the case in PPI
graphs known.

An overlapping class system can be defined by a binary relation α :
V ×V →{0,1}, such that αxy =1 if both x and y belong at least once
to a common class and 0 otherwise. Angelelli and Reboul (2008)
have proved that quantity:

Q(α)=
∑

x �=y

Bxyαxy

extends Newman’s modularity to overlapping classes. Interestingly,
the relation α is defined for both strict and overlapping class systems
covering a graph. This formulation allows a good understanding of
this new modularity function.

• When the binary relation α is transitive and defines a partition P,

Q(α) = 2m2M(P)+1/2
∑

x∈1..n

d2
x .

Q(α) is thus an affine function of M, and it is equivalent to
maximize M or Q.

• When merging classes Vi and Vj , only the values αxy such
that elements x∈Vi and y∈Vj are newly joined together, are
modified. The sum of the corresponding Bxy values is added to
modularity Q. The modularity function increases if and only if
this sum is positive.

• Q is upper bounded by the sum of the positive values in B:

Qmax =
∑

x �=y

Bxy.

Qmax is thus reached for any class system composed of all
edges and exclusively edges, as for the set of maximal cliques
or simply the set of all edges.

3.2 A hierarchy of overlapping classes
The principle of OCG, is to build a tree in which the leaves are initial
classes that are progressively and hierarchically joined (Fig. 1).
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Fig. 1. Flowchart of the OCG algorithm. The graph is covered by an
initial overlapping class system. The initial classes are hierarchically fused
optimizing the modularity of the partition, leading to overlapping clusters.

To avoid confusion between the initial and final overlapping classes,
we will hereafter refer to the latter as clusters.

In Newman’s algorithm that maximizes the modularity over the
set of strict partitions (Newman, 2006), the starting point is the set
of singletons in V . This initial partition has a null modularity, since
there are no internal edges. Then, while modularity increases, the
two clusters Vi and Vj whose union gives the positive maximal gap
are merged: Vi and Vj are deleted and replaced by Vi ∪Vj . The gap is
equal to the difference between the modularity values when clusters
Vi and Vj are separated or joined together. A hierarchy of nested
clusters is built iteratively, and the algorithm stops when no further
fusions can produce a gain in modularity.

The modularity formula Q allows adapting this hierarchical
process to overlapping initial classes and merging them according to
a similar greedy strategy. At each step, the joined clusters are those
maximizing the average gain. Using this average value, defined as
the global modularity gain divided by the number of newly joined
vertex pairs, allows avoiding the chain effect that adds elements one
by one and produces clusters inappropriate for subsequent functional
prediction.

The merging process is stopped either by setting the expected
number of clusters, or by bounding the maximal cluster’s cardinality
or by maximizing the modularity. Note that the latter cannot be used
systematically because the modularity function may decrease or not
be monotonous with respect to the chosen initial class system (see
next paragraph).

At the end, an optimization step is added: the contribution
of each element to the modularity of the clusters is measured.
When negative, the element is transferred to the cluster where its
contribution is the highest. This filtering process permits eliminating

loosely assigned elements and therefore further improving both the
modularity value and the performance of the method.

3.3 Choosing an initial class system
For any graph, there are four main natural covering class systems:
(i) singletons, which generate disjoint clusters and are therefore
not appropriate for our objective; (ii) edges, which give a large
number of initial classes; (iii) maximal cliques, which can be very
demanding computationally; and (iv) adjacency lists, which do
not allow optimizing modularity because highly connected nodes
contribute to negative modularity values.

Obtaining overlapping clusters thus implies either using edges or
maximal cliques:

• The maximal cliques of graph G: can be computed for large PPI
graphs because such networks are very sparse. When the list of
the maximal cliques is computed, a class system of modularity
Qmax is formed. Any class fusion will contribute to Q decrease
until Qmin = ∑

x=1..n d2
x .

• The edges of G: the modularity of the system is maximal and the
merging process begins by establishing cliques. The modularity
function increases as long as the algorithm finds two clusters
Vi and Vj such that ∀(x,y)∈Vi ×Vj,(x,y)∈E.

The efficiency of the algorithm depends on the number K of initial
classes, since K corresponds to the number of iterations. Each
iteration requires O(K2)+O(n2) operations.As for most hierarchical
schemes, the global complexity is in O(K3) in time and O(K2)
in memory space. Given this O(K3) complexity, starting from an
huge initial class system based on edges or maximal cliques leads
to excessive computation times. To reduce the number of initial
classes, we propose to limit K to the number of vertices n, thereby
introducing the centred clique system.

• The centred cliques: for each vertex x∈G, a clique is built
using a greedy polynomial algorithm. As long as a clique is
produced, vertices adjacent to x are added in decreasing order
of their relative degree. The resulting clique, containing x, is
not necessarily maximal since a larger one containing x could
exist. After the elimination of the included sets, at most n
distinct initial classes remain, thus reducing the computation
time (Algorithm in Supplementary Material 1).

• Initial class system assessment: the ability of the three initial
class systems to produce relevant sets of overlapping clusters
has been evaluated by applying OCG to random graphs with
different probabilities of edges (see section 2). These graphs
are composed of 200 vertices distributed in four overlapping
theoretical clusters, according to the partition schema shown
in Figure 2A. Results are represented in ROC space (Fig. 2B)
to compare the theoretical clusters to those obtained by OCG
(see section 2).
For each initial class system, the false positive rate is very low
and the number of true positive tends to be underestimated
when the edge probability is low. However, sensitivity
drastically drops with edge probability (i.e. graph density)
except when graphs are covered with the centred clique system.
We have, therefore, chosen this system for further studies. Note
that PPI networks have a lower edge density (47 times lower
than simulated graphs for the human PPI network investigated
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Fig. 2. (A) Theoretical partition composed of 200 vertices. The four
overlapping regions contain 10 vertices each. (B) Comparison of OCG
performance, according to the initial class system chosen, when applied to
simulated graphs with different edge probabilities (Pi = 0.15, 0.20, 0.25, from
light grey to black). Results are represented in ROC space.

herein) that cannot be simulated without disconnecting the
graph. Finally, the centred clique system is the least time and
memory consuming.

4 RESULTS: MULTIFUNCTIONAL PROTEINS ARE
REVEALED AT THE INTERSECTION OF
CLUSTERS

4.1 Applying OCG to the human PPI network
A large human PPI network of 24027 interactions between 6172
proteins has been partitioned by OCG, using the centred clique
system to initially cover the graph. The fusion process was
stopped when the maximal modularity was reached. Ultimately,
396 overlapping clusters containing 31.4 proteins on average
were obtained (Supplementary Material 2). Overall, a third of
the network’s proteins belong to several clusters (2104/6172,
Supplementary Material 3).

4.2 Functional and topological features of multi- versus
monoclustered proteins

Next, we asked whether topological and functional features
can distinguish multi- from monoclustered proteins (Fig. 3A).

Fig. 3. (A) Topological and functional features of multi- versus
monoclustered proteins. For each feature, the distributions of mono-
and multiclustered proteins are represented by boxplots (line = median;
dot = mean). (B) Gene Ontology terms overrepresented among multiclustered
proteins [Image created by SimCT (Hermann et al., 2009)].

On average, multiclustered proteins have a higher degree and
a higher node betweenness (Wilcoxon test, p−val≤2.2e−16).
Multi- and monoclustered proteins have no significant difference
in length. Nevertheless, multiclustered proteins contain more
domains than monoclustered (3.6 versus 3, p−val=3e−6). This
is reflected by the number of Gene Ontology (GO) terms
annotating multiclustered proteins. In all three GO subontologies
(Molecular Function, Cellular Component and Biological Process),
multiclustered proteins are, on average, annotated to more terms
than monoclustered (p−val≤2.2e−16). Multiclustered proteins,
therefore, appear to be involved in a larger number of processes
than monoclustered.

The detailed analysis of the annotations of each protein group
shows interesting qualitative differences. While there are no
overrepresented terms among the annotations of monoclustered
proteins in any of the subontologies (data not shown), multiclustered
proteins are enriched in Biological Process GO terms referring to
regulatory functions and protein complex assembly (Fig. 3B). This
observation is confirmed by the statistical overrepresentation of
the Molecular Function GO terms related to transcription regulator
activity, enzyme- and receptor-binding activities (p−val=1.4e−5,
3.4e−4 and 2.4e−3, respectively) and of proteins participating
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in protein complexes (enrichment 2.2, p-val=7.4e−70) (data not
shown). Finally, products of cancer genes are also enriched among
multiclustered proteins (enrichment 2.6, p-val = 7.4e−15), whereas
proteins involved in other types of diseases are not (see Materials
and Methods for details).

To sum up, these results show that multiclustered proteins are
more central in the network, contain more domains and are involved
in a large number of—mainly regulatory—processes, all features
that can be considered as hallmarks of multifunctional proteins.
Therefore, the OCG algorithm appears to detect multifunctional
proteins in cluster intersections. This conclusion is emphasized
by the fact that the 10 most multiclustered proteins are bona fide
multifunctional proteins involved in general regulatory functions
(ubiquitination, regulation of transcription and signaling) and are
consequently involved in numerous biological processes (Table 1).

5 COMPARISON TO OTHER METHODS
We compared the performance of the OCG partitioning algorithm
to other methods, based on different principles that also lead to
overlapping clusters. CFinder (Adamcsek et al., 2006) uses a Clique
Percolation Method (Palla et al., 2005) in which the k cliques are
computed and two vertices are in the same cluster if a path going
through (k−1) cliques exists between them. Link Communities
(Ahn et al., 2010) applies a hierarchical clustering process to the

Table 1. Top 10 multiclustered, bona fide multifunctional proteins and the
number of clusters each belongs to

Protein names Clusters

UBQL4, ubiquilin-4 53
P53, cellular tumor antigen p53 46
SMAD2, mother against decapentaplegic homolog 2 38
EP300, histone acetyltransferase p300 36
SMAD3, mothers against decapentaplegic homolog 3 36
SMAD9, mothers against decapentaplegic homolog 9 35
TRAF2, TNF receptor-associated factor 2 34
EGFR, epidermal growth factor receptor 33
CBP, CREB-binding protein 33
TGFR1, TGF-beta receptor type-1 33

line graph (edge duality), equivalent to our initial class system when
corresponding to the edges of G.

5.1 Simulated graphs
The three methods were applied to random graphs of different
edge densities simulated according to several models: Erdös-Rényi,
Random spanning trees and Geometric random graphs [Geo3D,
Przulj et al. (2004)] (see Section 2). When the two first models are
used (Fig. 4A and B), improving sensitivity costs a loss of specificity
for CFinder and Link Communities, while OCG’s performance
remains relatively stable. When the GeO3D model is used (Fig. 4C),
OCG offers the better trade-off between sensitivity and specificity.
In addition, OGG’s performance is only slightly affected by the
edge density of the simulated graphs (Fig. 4A–C). OCG, therefore,
fares better on low edge density, such as PPI, graphs than the
other methods. In order to take into account the number of clusters
generated by the methods in the evaluation scheme, we computed
the accuracy value proposed by Brohée and van Helden (2006). In
all cases, OCG performs better (Supplementary Fig. S1).

Finally, a negative control shows that the performance of all
three methods is close to random when either the nodes or the
edges of the simulated graphs are shuffled with the 3 tested models
(Supplementary Fig. 2).

5.2 Human PPI network
All three methods were applied to the human interactome. In the
absence of a dataset of bona fide multifunctional proteins with
which the methods could be benchmarked, we reasoned that proteins
multiclustered by all three methods are the most likely candidates
for multifunctionality. We therefore calculated, for each of the
three methods, what percentage of the top 5% most multiclustered
proteins was also multiclustered by the other two methods (Table 2).
The results obtained are similar to the performances recorded on
simulated graphs. Although most proteins multiclustered by CFinder
are also found by the other two methods (high specificity), these are
very few in number (low sensitivity). For Link Communities, on
the other hand, only a third is found by the other methods (high
sensitivity/low specificity). By this standard, therefore, OCG has a
good trade-off between sensitivity and specificity because half of the
proteins multiclustered by OCG are found by both other methods
and all are found by at least one.

Fig. 4. Comparison of the performances of CFinder, Link Communities and OCG when applied to different random graphs (A) Erdös-Rényi; (B) Random
spanning trees; (C) Geo3D with different edge probabilities (pi = 0.20, 0.25, ..., 0.45, 0.50, from light grey to black). Results are represented in ROC space.
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Table 2. Percentage of the top 5% most multiclustered proteins identified by
each method that were multiclustered by the tested method and both others
(MC3), by the tested method and one other (MC2), and by the tested method
alone (MC1)

Method Top 5 (%) MC3 (%) MC2 (%) MC1 (%)

OCG 104 50 50 0
CFinder 24 92 8 0
Link Com 149 36 52 12

Finally, we have shown that OCG tends to multicluster those
proteins with a higher number of domains and GO annotations while
monoclustering those with less (Fig. 3). Although the other methods
show the same trend (Supplementary Figs S3 and S4), the Wilcoxon
test P-values indicate that OCG is better at discriminating between
multi- and monoclustered proteins.

6 DISCUSSION
Graph partitioning can lead to ambiguous results where a node
is assigned to one particular cluster but could, just as well,
have been assigned to another. This situation is often due to the
structure of the graph under study and is particularly encountered
during analyses of PPI networks. Indeed, although the modularity
of these networks allowed identifying clusters of proteins acting
together in particular biological processes using appropriate graph
partitioning, the uniqueness of node classification impedes revealing
the involvement of some proteins in multiple processes. The reality
of PPI networks, therefore, is more accurately described by allowing
modules (clusters) to overlap. To deal with this dual nature of PPI
graphs (both modular and overlapping), we have developed the
OCG algorithm described herein, a method to cover graphs with
overlapping clusters based on the optimization of the modularity. We
propose covering the graph with centred cliques that we iteratively
fuse. This initial class system outperforms the recently developed
Link Communities algorithm (Ahn et al., 2010) (Fig. 4), which aims
at capturing the overlapping structure of the graph by grouping
similar edges into a hierarchy. OCG, therefore, appears better at
grasping the overlapping nature of graphs with low density of edges,
such as PPI networks.

Currently available PPI networks represent only a subset of all
PPIs in a given cell. Therefore, the topological structure of the
entire interactome is still unknown and under debate. A direct
consequence of this uncertainty is the lack of ‘real’ partitions
against which we could test the efficacy of our methods. Therefore,
simulations have been performed using several models of random
graphs (Kuchaiev and Przulj, 2009). In this context, we chose to:
(i) design a graph with overlapping communities to be recovered,
(ii) build simulated graphs corresponding to this system, according
to three different models and (iii) apply the methods mentioned
here on each of the simulated graphs. This approach allowed us
to test the performance of each method on a difficult problem in
which each cluster to be found shares nodes with two other clusters.
Since the simulated graphs with overlapping communities might not
faithfully reflect the biological reality (i.e. proteins may be involved
in more than two processes), we verified that multiclustered nodes in
simulated and biological graphs have similar characteristics. Indeed,

multiclustered nodes have higher average degree and betweenness
than monoclustered in both types of graphs (data not shown).

When OCG is used to cluster a PPI network, multifunctional
proteins are identified at the intersections of the overlapping clusters.
Interestingly, the top 10 most multiclustered proteins are important
transcriptional regulators and signaling proteins which are integral
parts of most cellular processes. This emphasizes the fact that
functional modules can be interconnected through the regulators
they share. It, therefore, appears that OCG could represent a valuable
tool to investigate cross-talk between processes.
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